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Abstract

When carrying out vibration health monitoring (VHM) of a structure it is usually assumed that the structure is in the

absence of fluid interaction and/or that any environmental effects which can cause changes in the vibration response of the

structure either remain constant or are negligible. In general, the natural frequencies of a structure are the first candidates

to be considered for damage features. But the natural frequencies would also change as a result of the interaction of the

structure with a fluid/gas environment. For the purpose of VHM, one needs the pure structural natural frequencies

corresponding to conditions when the structure does not interact with the environment. Therefore, in certain cases when

the above assumptions cannot be made it becomes necessary to extract values of natural frequencies of the structure if it

were in the absence of fluid interaction from those values measured. This paper considers the case of a cantilever beam in

contact with a fluid cavity giving rise to strong structural/fluid vibration interaction and develops a method by which the

natural frequencies of the beam in the absence of fluid interaction can be obtained from those of the beam in interaction.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration health monitoring (VHM) of structures is based upon monitoring aspects of the vibration
signature of the structure and relating any changes in these to the introduction, or progression, of damage.
The normal manner in which VHM is applied is to lightly excite the structure and record any changes, which
occur to the modal parameters, which are then related to changes (damage) which are (have) occurred in the
structure. Damage in a structure, which can be either concentrated (in the form of a crack) or distributed
(corrosion, erosion), normally leads to alterations of the stiffness and/or mass, which in turn results in changes
in the vibration response of the structure. A number of authors suggest the use of the natural frequencies as a
first resort for damage features, because they are easy and straightforward to obtain from experiment [1,2].
Beams are simple structures, which lend themselves well to VHM in which changes in natural frequency are
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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used as the basis for damage detection [2–4]. An important condition for VHM is that any environmental
effects, such as temperature stressing and/or structural/fluid interaction, remain constant, or better still are not
present since these effects alone can cause changes to the vibration signature and therefore obscure any
changes due to defects in the structure.

This paper considers a general idealised case of a simple cantilever beam in free lateral vibration and
interacting with a rectangular fluid cavity. Previous studies of cantilevers in interaction with a fluid have been
related either to the case where the fluid medium has been infinite [5], i.e., no wall reflecting the fluid pressure
waves, and the celebrated work of Sarkar and Paidoussis [6] in which cantilever pipes have been conveying
fluid. In the present study, linear vibrations are assumed because in general a number of structural elements,
and beams in particular, demonstrate linear behaviour especially for small amplitude vibrations, as is normally
the case for the purpose of VHM. Nonlinearities and nonlinear behaviour can become important for cases of
large amplitude vibrations, e.g. close to some of the natural frequencies of the structures during modal testing
for the purpose of predicting how the structure will behave under the action of large and multipoint exciting
forces [7]. This paper details the development of a method for extracting the natural frequencies of the beam in
the absence of fluid interaction (which can be then used as the basis of VHM) from those values obtained from
the beam/fluid cavity coupled system.

The paper commences by presenting a comprehensive analysis of the coupled free vibration of a cantilever
beam in interaction with a fluid-filled fluid cavity. The analysis is based upon a similar analysis of a circular
plate in interaction with a fluid cavity [8], which produced natural frequencies of the coupled system and was
in good agreement with values obtained using finite element analysis and experiments. The analysis is based
upon the basic equations describing the free vibration of the beam and of the fluid, which are then combined
using the Galerkin approach. The analysis proceeds to establish the relative energy between the beam and fluid
whilst in interaction and finally describes a method whereby the natural frequencies of the beam in the absence
of fluid interaction can be extracted from knowledge of the natural frequencies of the coupled system together
with known parameters of the fluid cavity.

2. Free vibration analysis of a beam in interaction with a fluid cavity

Fig. 1 shows an idealised model of a coupled structural/fluid vibration interacting system in the form
of a cantilever beam, of length a, interacting with a enclosed rectangular fluid (air) cavity of length a and depth
l. The vibration of the beam is a function of the spatial coordinate, x, and time, t, only whilst the pressure
in the fluid due to the ensuing vibration of the beam is a function of the spatial coordinates, x and y, and time,
t, only. The beam is located at y ¼ l. Both the beam and fluid cavity will have the same width (along the o–z
a
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Fig. 1. Schematic diagram of the idealised coupled structural/fluid system.
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axis shown) and for small linear vibration of the system, any vortex effects at the free end of the beam (x ¼ a)
are assumed negligible. In this idealised system, any fluid pressure acting on the open top of the beam will be
treated as negligible on the basis that the fluid is air (or a gas) and these pressure waves will travel off to
infinity.

Hence, the equation of motion, describing the free small lateral vibration, w ¼ w(x, t), of a cantilever beam
of constant rectangular cross section in interaction with the fluid in a rectangular cavity shown in Fig. 1, is [9]

q4w̄

qx̄4
¼
�rdha4

EI 0
q2w̄
qt2
þ

pa3

EI 0

����
ȳ¼1

, (1)

where w̄ ¼ w=a, x̄ ¼ x=a, and ȳ ¼ y=l are dimensionless displacement and coordinates, E is Young’s modulus
and I0 is the second moment of area of the beam per unit width about the neutral axis of bending ( ¼ h3/12)
and rd is the beam material mass density; h is the beam thickness, a is the length of the beam, equal to the
horizontal length of the fluid cavity; l is the depth of the fluid cavity and p is the oscillatory pressure of the fluid
loading the beam.

Now writing

w̄ ¼
X1
s¼1

wscs e
iot, (2)

where cs ¼ csðx̄Þ is the sth natural mode shape of the beam in the absence of fluid interaction and ws is a
constant associated with that mode, generally referred to as the mode shape coefficient for the sth mode. It is
therefore assumed that (in accordance with the Galerkin approximation) that the natural mode shapes of the
structure are unaffected by the presence of the fluid pressure acting on the structure. For a particular value of
s, the natural frequency of free undamped vibration os, is then [9]

os ¼ x2s

ffiffiffiffiffiffiffiffiffiffiffiffi
EI 0

rdha4

s
, (3)

where xs is the non-dimensional natural frequency of the beam for the sth mode. For a cantilever beam whose
boundary conditions are

w̄jx̄¼0 ¼
qw̄

qx̄

����
x̄¼0

¼
q2w̄
dx̄2

����
x̄¼1

¼
q3w̄
dx̄3

����
x̄¼1

¼ 0

for all time, the values of xs are the roots of the equation

cos xs cosh xs ¼ �1

and the first ten roots (s ¼ 1,2,3,y,10) are listed in Table 1.
The sth natural mode shape of the cantilever is [9]

cs ¼ sin xsx̄� sinh xsx̄� msðcos xsx̄� cosh xsx̄Þ, (4)

where ms ¼ sin xs þ sinh xsð Þ= cos xs þ cosh xsð Þ.
Table 1

Non-dimensional natural frequencies, xs, of a cantilever beam in the absence of fluid interaction

s xs s xs

1 1.8751 6 17.2789

2 4.6940 7 20.4203

3 7.8548 8 23.5620

4 10.9955 9 26.7036

5 14.1372 10 29.8453
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For a particular mode of vibration for the beam in the absence of fluid interaction:

q4cs

qx̄4
¼

o2
srdha4

EI 0
cs. (5)

Therefore, combination of Eqs. (1), (2) and (5) gives

X1
s¼1

½ðo2
s � o2Þwscs� e

iot ¼
p

rdha

����
ȳ¼1

. (6)

We shall now establish the form of the fluid pressure, p, acting on the beam. Consider the fluid cavity shown
in Fig. 1, whose velocity potential, f ¼ f(x, y, t) is described by the standard two spatial dimension wave
equation

q2f̄
qx̄2
þ

a

l

� �2 q2f̄
qȳ2
¼

a

c

� �2 q2f̄
qt2

, (7)

where f̄ ¼ f=ac; ȳ ¼ y=l and c is speed of sound.
The general solution to Eq. (7), assuming the function of time to being harmonic, is

f̄ ¼
X1
q¼1

Aqf̄xqf̄yq e
iot, (8)

where f̄xq is a function of x̄ only and f̄yq is a function of ȳ only and Aq is a constant for a particular value of q.
The velocity potential function yields the velocity components of the fluid in the x and y directions as vxq and
vyq, respectively, viz.,

vxq ¼
qf
qx
¼ c

qf̄
qx̄

,

vyq ¼
qf
qy
¼

ac

l

qf̄
qȳ

. ð9Þ

Therefore, substituting Eq. (8) into Eq. (7) and imposing the boundary conditions

vxjx̄¼0 ¼ vxjx̄¼1 ¼ 0 for all ȳ,

vyjȳ¼0 ¼ 0 for all x̄

gives f̄xq ¼ cosðq� 1Þpx̄ and f̄yq ¼ cosðaqȳÞ where aq ¼ ðl=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � g2q

q
, l ¼ oa=c and gq ¼ (q�1)p.

Substituting the above expressions for f̄xq and f̄yq in Eq. (8) gives

f̄ ¼
X1
q¼1

Aq½cosðq� 1Þpx̄�½cosðaqȳÞ� eiot. (10)

At ȳ ¼ 1, vy and the lateral velocity of the beam are equal, i.e.,

qf
qy

����
ȳ¼1

¼
qw

qt
,

c

l

qf̄
qȳ

����
ȳ¼1

¼
qw̄

qt
for 0px̄p1. ð11Þ

Combining Eqs. (2), (10) and (11) and using the orthogonal properties of eigenfunctions gives

Aq ¼ �i
l

a

� �
l
P1

s¼1wskqs

aqIq sin aq

, (12)

where

kqs ¼

Z 1

0

csf̄xq dx̄ (13)
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the value of which can be obtained through standard numerical integration, and,

Iq ¼

Z 1

0

f̄
2

xq dx̄.

Now the fluid pressure, p, at the surface of the beam is given by

pjȳ¼1 ¼ �acrf

qf̄
qt

����
ȳ¼1

,

where rf is the fluid density. Therefore, combining Eqs. (10) and (12) give

pjȳ¼1 ¼ �o
2alrf

X1
s¼1

X1
q¼1

wskqsf̄xq

ðaq tan aqÞIq

eiot. (14)

Substituting Eq. (14) into Eq. (6) gives

X1
s¼1

ðo2
s � o2Þwscs ¼ �o

2
rf l

rdh

X1
s¼1

X1
q¼1

wskqsf̄xq

ðaq tan aqÞIq

.

Multiplying both sides by f̄xq and integrating between 0px̄p1 gives

X1
s¼1

wskqs o2
s � o2 1�

r
ðaq tan aq Þ

� 	
 �
¼ 0; q ¼ 1; 2; 3 . . . , (15)

where r ¼ rfl/rdh is the ratio of the mass of the fluid to the mass of the beam.
Since, from Eq. (3), o2

s ¼ x4s ðEI 0=rdha4Þ then we introduce Z instead of o by the relation

o2 ¼ Z4
EI 0

rdha4
. (16)

Hence, Eq. (15) can be re-expressed as

X1
s¼1

wskqs x4s � Z4 1�
r

ðaq tan aqÞ

� 	
 �
¼ 0; q ¼ 1; 2; 3; . . . ,

which can be represented in matrix form as

a11ðx1; ZÞ a12ðx2; ZÞ � � � a1nðxn; ZÞ

a21ðx1; ZÞ a22ðx2; ZÞ � � � a2nðxn; ZÞ

..

. ..
. ..

.

� � � aqsðx2; ZÞ � � �

..

. ..
. ..

.

an1ðx1; ZÞ an2ðx2; ZÞ � � � annðxn; ZÞ

2
666666666664

3
777777777775

w1
w2

..

.

ws

..

.

wn

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

0

0

..

.

0

..

.

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, (17)

i.e.

Aðxs; ZÞv ¼ 0, (18)

where

aqsðxs; ZÞ ¼ kqs x4s � Z4 1�
r

ðaq tan aqÞ

� 	
 �
. (19)

Hence, values of Z can be obtained (iterated upon) which renders the determinant of the matrix.
A(xs,Z) equal to zero. Consequently, for each of these values of Z the corresponding normalised values of

mode shape coefficients w1,w2,ywn, are obtained. The determinant of this matrix equation is obtained by
performing the LU decomposition [10,11], whereupon the value of the determinant is the product of the
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diagonal terms. Subsequently, these root values of Z which render the determinant zero are substituted back
into Eq. (18) to obtain the corresponding vector of the mode shape coefficients, v, (normalised to w1 in the first
instance and then to the largest value,) which describe which structural modes are present and dominant.

In Eq. (19) above, it is noted that significant deviation between Z and xs will occur around values of aq equal
to 0, p, 2p, etc. while minimum deviation will be around values of aq equal to 0.5p, 1.5p, etc.

We shall now develop and postulate the parameters, which will give rise to conditions of strong structural/
fluid vibration interaction. Fig. 2 shows a plot of a natural frequency, os, of the beam in the absence of fluid
interaction and a natural frequency, om, of the fluid cavity if the beam was rigid. Both of these natural
frequencies are plotted to a base of the controlling parameters, l; the depth of the cavity. Now, for any value of
s, the natural frequency of the beam in the absence of fluid interaction is given by Eq. (3) and this value is
independent of the depth l. A natural frequency of the solid bounded fluid cavity is obtained by now imposing
the condition that ðc=lÞðqf̄=qȳÞjȳ¼1 ¼ 0 for all x̄, upon Eq. (10).

This results in

aq ¼
l

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

ma2

c2
� g2q

r
¼ mp; m ¼ 1; 2; etc.

Note, in the special case(s) when m ¼ 0, this would imply only horizontal fluid modes with the fluid having zero
axial component of velocity, this having no interaction with the lateral vibration of the beam. Therefore, for mX1,

om ¼
c

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpa

l

� �2
þ g2q

r
. (20)

Reference to Eq. (20) and Fig. 2 demonstrates that as the value of l increases all values of om decrease and
will, for appropriate values of l ¼ lc correspond to values os of the beam in the absence of fluid interaction. In
such circumstances we will then have strong structural/fluid vibration interaction characterised by a region of
‘‘veering’’ whence at l ¼ lc the strongly interacting system will exhibit two natural frequencies close to each
other and in the region where om ¼ os. Around such a condition experiments on the system would show there
to be two natural frequencies of the system which are very close in value; one would represent a strongly
coupled structural/fluid (st/fl) mode and the other a strongly coupled fluid/structural (fl/st) mode. Therefore
for l ¼ lc we can equate Eqs. (3) and (20) to give

x2s
h

a2

ffiffiffiffiffiffiffiffiffiffi
E

12rd

s
¼

c

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpa

lc

� �2

þ g2q

s
.

veering

fl/st

st/fl

l = lc
l

System
frequencies �

�s
�s

�m

�
s,�

m

Fig. 2. Condition for strong structural/fluid vibration interaction.
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For the special case where the system is designed such that a particular natural frequency of the beam in the
absence of fluid interaction, os, is equal to a natural frequency of the totally bounded fluid cavity, om, which
exhibits no horizontal component of fluid velocity, i.e. gq ¼ 0, then,

l̄c ¼
lc

a
¼

mpc

x2s

a

h

� � ffiffiffiffiffiffiffiffiffiffi
12rd

E

r
. (21)

Also, rearranging Eq. (20) the non-dimensional frequency parameter, bm, relating to a rigidly bounded fluid
cylindrical cavity is obtained and equal to

bm ¼
oml

pc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

l̄
2

p2
g2q

s
, (22)

where l̄ ¼ l=a. The parameter bm can then be used as an indication of the characteristic of the fluid vibration.
For this special case where gq ¼ 0, from Eq. (22), bm ¼ m.

Prior to examining the characteristics of the coupled vibration, the convergence of the analysis presented
will be investigated.

For this exercise, and all subsequent results, we will adopt the following properties and parameters;
c ¼ 343m/s (air), rd ¼ 7800 kg/m3, E ¼ 210GN/m2 and (a/h) ¼ 100.

2.1. Convergence

Referring to Eq. (18), the accuracy and range of values of Z obtained will be influenced by the equal number
of rows and columns selected for iteration of the determinant of matrix A(xs,Z) equal to zero, i.e., the value of
n. Accordingly, Table 2 shows the results obtained for the first two values of Z when n is set at values ranging
from 2 to 10. In this example, the dimension, l̄c is selected in accordance with Eq. (21), such that strong
coupling exists between the first natural frequency of the beam in the absence of fluid interaction (s ¼ 1) and
the first natural frequency of the completely bounded cavity (m ¼ 1, q ¼ 1). In this case the value of l̄c is
calculated to being 20.461. The first two root values of Z obtained from Eq. (18) are found to being around the
first natural frequency of the cantilever in the absence of fluid interaction, x1. These two values of Z can
therefore be compared with those for the cantilever in the absence of fluid interaction; x1 ¼ 1.8751. It is
immediately noted that the first value of Z is lower than x1 while the second is higher. This is in accordance
with the observation shown in Fig. 2 around l̄ ¼ l̄c.

From Table 2, it is seen that convergence, with respect to n, is extremely fast; requiring only n ¼ 4 for
convergence to two decimal places for these first two roots.

2.2. Energy analysis

In this study, since in all cases we are dealing with some degree of structural/fluid vibration interaction, it
would be erroneous to describe any mode of vibration as either purely a structural mode or a fluid mode.
Rather reference will be made to the modes as either structural/fluid (st/fl), to denote modes which are
predominantly structural with fluid interference, and likewise fluid/structural (fl/st) to denote modes which are
predominantly fluid but with structural interference. In an attempt to quantify the degree of coupling and
describe whether modes are mainly structural or fluid, attention will be drawn to the distribution of vibration
kinetic energy between the structural and fluid components of the system.
Table 2

Convergence

N ¼ 2 n ¼ 4 n ¼ 6 n ¼ 8 n ¼ 10

1.7876 1.7845 1.7840 1.7837 1.7836

1.9612 1.9646 1.9652 1.9654 1.9655
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For the beam the maximum kinetic energy of vibration per unit width, Tp, is calculated from

Tp ¼
Xn

s¼1

Tps,

where from Eq. (2),

Tps ¼
1

2
rdha3o2

Z 1

0

½wscs�
2 dx̄.

For the fluid the maximum kinetic energy per unit width, Tf, is calculated from

Tf ¼
Xn

q¼1

T
y
fq þ

Xn

q¼1

Tx
fq,

where

T
y
fq ¼

1

2
rf al

Z 1

0

Z 1

0

ðvyqÞ
2 dȳdx̄

and

Tx
fq ¼

1

2
rf al

Z 1

0

Z 1

0

ðvxqÞ
2 dȳdx̄

and both vyq and vxq are now obtained from Eqs. (9). Therefore, a set of relative kinetic energy vectors for the
fluid and beam can be written as

KE
y
fq ¼ {KE

y
f 1, KE

y
f 2,yKE

y
fq,yKE

y
fn} ¼ vector of relative vertical kinetic energy components (q) of the

fluid,
KEx

fq ¼ {KEx
f 1, KEx

f 2,yKEx
fq,yKEx

fn} ¼ vector of relative horizontal kinetic energy components (q) of the
fluid, and
KEps ¼ {KEp1, KEp2,yKEps,yKEpn} ¼ vector of relative kinetic energy of lateral vibration components
(s) of the beam,
where KE

y
fq ¼ T

y
fq=½Tf þ Tp� � 100%, KEx

fq ¼ Tx
fq=½Tf þ Tp� � 100% and KEps ¼ Tps=½Tf þ Tp� � 100%.

Using the above relative percentage energies, the characteristics of a cantilever beam in strong interaction
with a fluid cavity as described is investigated. Consider the case where l̄c is 20.461 which, as before, results in a
condition of strong coupling between the first mode of the beam in the absence of fluid interaction (s ¼ 1), and
the first (m ¼ 1) axial mode of the fluid cavity if the beam is assumed rigid. In all cases the ratio of a/h ¼ 100
and only roots of the system matrix Eq. (18), Z, which are close to those corresponding to the first two
frequency roots of the beam in the absence of fluid interaction; x1 and x2, equal to 1.8751 and 4.6940,
respectively, will be considered.

Table 3 lists details of all coupled modes of vibration up to the 8th mode. From this table it is evident that
the modal energy of the subsystems renders an excellent means of describing the degree of coupling and
dominance of the structure or fluid. Also, calculation of the associated value of bm from Eq. (22), using the
computed value of frequency, o, of the coupled system indicates the number of vertical waves associated with
the horizontal component of the vibration of the fluid. It is also interesting to note that for modes with a
strong or moderate structural component, the vector of mode shape coefficients v is very well defined. For
example for the first two coupled modes (1 and 2) with frequencies around that corresponding to the first
natural frequency of the beam in the absence of fluid interaction, v ¼ {1,0,0,y}T and for mode 8 which is
once again structurally dominant at a frequency close to that of the second natural frequency of the beam in
the absence of fluid interaction, v ¼ {0,1,0,0,0,y}T. On the other hand, for modes of a strong fluid nature,
such as modes 3–7 in Table 2, it is observed that the vector v indicates significant contributions from more
than one structural mode, e.g., mode 6 where v ¼ {0.98,1,0.023,y}T. This observation of the form of the
vector v for modes with a strong or moderate structural energy component will be seen to be important when
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Table 3

Modes of free vibration of structural/fluid interacting system with associated energy vectors

Z, bm v, KEps, KE
y
fq, KE

x
fq

Mode description

Coupled

mode 1

v ¼ {1,0,0,y}T Strongly coupled fl/st mode at s ¼ 1, q ¼ 1, m�1

1.7840,

0.9051

KEps ¼ {44.84,�0,�0,y}

KE
y
fq ¼ {55.16,�0,�0,y}

KEx
fq ¼ {�0,�0,y}

Coupled

mode 2

v ¼ {1,0,0,y}T Coupled st/fl mode at s ¼ 1, q ¼ 1, m�1

1.9652,

1.0984

KEps ¼ {51,�0,�0,y}

KE
y
fq ¼ {49,�0,�0,y}

KEx
fq ¼ {�0,�0,�0,y}

Coupled

mode 3

v ¼ {1,0.0522,�0,y}T Weakly coupled fl/st mode. Almost total fluid vertical energy at q ¼ 1, m�2

2.6600,

2.0123

KEps ¼ {1.64,�0,�0,y}

KE
y
fq ¼ {98.36,�0,�0,y}

KEx
fq ¼ {�0,�0,�0,y}

Coupled

mode 4

v ¼ {1,0.16,�0,�0,y}T Weakly coupled fl/st mode. Almost total fluid vertical energy at q ¼ 1, m�3

3.2513,

3.0066

KEps ¼ {0.53,�0,�0,y}

KE
y
fq ¼ {99.47,�0,�0,y}

KEx
fq ¼ {�0,�0,�0,y}

Coupled

mode 5

v ¼ {1,0.39,0.014,�0,y}T Weakly coupled fl/st mode Almost total fluid vertical energy at q ¼ 1, m�4

3.7521,

4.004

KEps ¼ { 0.27,0.04,0,y}

KE
y
fq ¼ {99.69,�0,�0,y}

KEx
fq ¼ {0,0,0,y}

Coupled

mode 6

v ¼ {0.98,1,0.023,y}T Weakly coupled fl/st mode. Almost total fluid vertical energy at q ¼ 1, m�5

4.1936,

5.0017

KEps ¼ {0.16,0.17,�0,y}

KE
y
fq ¼ {99.67,�0,y}

KEx
fq ¼ {�0,�0,�0,y}

Coupled

mode 7

v ¼ {0.155,1,0,y}T Weakly coupled fl/st mode. Almost total fluid vertical energy at q ¼ 1, m�6

but with 4.4% interaction with the beam at s ¼ 2

4.5898,

5.9915

KEps ¼ {0.1,4.4,�0,y}

KE
y
fq ¼ {95.5,�0,�0,y}

KEx
fq ¼ {�0,�0,�0,y}

Coupled

mode 8

v ¼ {0,1,0,y}T Weakly coupled st/fl mode. Almost total beam energy at s ¼ 2 with slight

interaction with fluid vertical energy at q ¼ 1, m�6

4.6946,

6.268

KEps ¼ { 94.82,�0,y}

KE
y
fq ¼ {5.18,�0,y}

KEx
fq ¼ {�0,�0,�0,y}
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Table 4

Non-dimensional natural frequencies, mode shape coefficients and relative structural vibration energy at coupled modes around

frequencies close to those of the structure in the absence of fluid interaction

Z (xs) v , KEps Mode description

1.7840,

(x1 ¼ 1.8751)

v ¼ {1,0,0,y}T Strongly coupled fl/st around the 1st natural mode of the structure

KEp1 ¼ 44.84

+1.9652,

(x1 ¼ 1.8751)

v ¼ {1,0,0,y}T Strongly coupled st/fl around the 1st natural mode of the structure

KEp1 ¼ 51

+4.6945,

(x2 ¼ 4.6940)

v ¼ {0,1,0,y}T Weakly coupled st/fl mode. Almost total beam energy at the 2nd structural

mode

KEp2 ¼ 94.815

+7.8489,

(x3 ¼ 7.8548)

v ¼ {0,0,1,0,0,y}T Weakly coupled st/fl mode. Almost total beam energy at the 3rd structural

mode

KEp3 ¼ 98.403

+10.9581,

(x4 ¼ 10.9955)

v ¼ {0,0,0,1,0,0 y}T Weakly coupled st/fl mode. Almost total beam energy at the 4th structural

mode

KEp4 ¼ 97.566

+14.1298,

(x5 ¼ 14.1372)

v ¼ {0,0,0,0,1,0,0,y}T Strongly coupled st/fl around the 5th natural mode of the structure

KEp5 ¼ 55.223

14.1358,

(x5 ¼ 14.1372)

v ¼ {0,0,0,0,1,0,0,y}T Strongly coupled fl/st around the 5th natural mode of the structure

KEp5 ¼ 34.15

+17.2751,

(x6 ¼ 17.2789)

v ¼ {0,0,0,0,0,1,0,0,y}T Moderately coupled st/fl around the 6th natural mode of the structure

KEp6 ¼ 76.45

17.2893,

(x6 ¼ 17.2789)

v ¼ {0,0,0,0,0,1,0,0,y}T Moderately coupled fl/st around the 6th natural mode of the structure

KEp6 ¼ 11.26

+20.4135,

(x7 ¼ 20.4203)

v ¼ {0,0,0,0,0,0,1,0,0y}T Moderately coupled st/fl around the 7th natural mode of the structure

KEp7 ¼ 74.98

20.4223,

(x7 ¼ 20.4203)

v ¼ {0,0,0,0,0,0,1,0,0y}T Moderately coupled fl/st around the 7th natural mode of the structure

KEp7 ¼ 15.57

23.5455,

(x8 ¼ 23.5620)

v ¼ {0,0,0,0,0,0,0,1,0,0,y}T Moderately coupled fl/st around the 8th natural mode of the structure

KEp8 ¼ 29.92

+23.5546,

(x8 ¼ 23.5620)

v ¼ {0,0,0,0,0,0,0,1,0,0,y}T Moderately coupled st/fl around the 8th natural mode of the structure

KEp8 ¼ 73.56
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considering the inverse problem, i.e., the problem of being able to extract the natural frequencies of what the
beam would be in the absence of fluid interaction, xs, when one has obtained values of the natural frequencies
of the coupled system, Z. To reinforce this observation, Table 4 lists details of the modes of vibration, which
have strong or moderate structural energy components and therefore have natural frequencies close to those
corresponding to natural frequencies of the beam in the absence of fluid interaction. In all of these cases it is
observed that the vectors of mode shape coefficients contain one relevant unity and all other components are
zero (to 3 decimal places).

3. The inverse extraction problem

In the foregoing analysis, known values of the structural natural frequencies together with the parameters of
the fluid cavity were used as the input to computed values of natural frequencies of the structural/fluid coupled
system and corresponding vector of structural mode shape coefficients from which the relative levels of
vibration kinetic energy were obtained for the structure and the fluid. As was seen from Tables 2 and 3, a
significant difference occurs between the natural frequencies of the coupled system, where there is significant
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relative vibration energy associated with the structure and the natural frequencies of the structure in the
absence of fluid interaction. Fig. 3 shows a plot of the two values of KEp1, around the first natural frequency of
the beam in the absence of fluid interaction, against Z and superimposed is the value of x1 ¼ 1.8751.

In such modes, it was observed that the vector of mode shape coefficients, v, was well defined with a single
unity at the structural mode in question and zeros for all other components. This, as will be seen, is very
important with respect to solving the inverse problem.

In structural modal analysis and vibration-based damage detection it is the values of the structural natural
frequencies alone, xs, which are of importance. Accordingly, in the case where the structure is in interaction
with a fluid cavity (as is the case here), accepting the coupled natural frequencies obtained from experiments
upon the coupled system to being sufficiently accurate estimates to the structural natural frequencies, could
have grave consequences and give erroneous information. Accordingly, the inverse problem in this case is
defined as extracting the structural natural frequencies, xs, from the values of the coupled natural frequencies,
Z, obtained from experiments and known parameters of the fluid cavity in interaction.

To achieve this, Eq. (18) can be written in the form

Aðxs; ZÞv ¼ ½KX�HK�v ¼ 0, (23)

where

K ¼

k11 k12 � � � k1n

k21 k22 � � � k2n

..

. ..
. ..

.

� � � kqs � � �

..

. ..
. ..

.

kn1 kn2 � � � knn

2
666666666664

3
777777777775
, (24)
51

η

100

75

50

25

0
1.784 1.9652

44.84

K
E

ρ1

1.8751=�1

η

Fig. 3. Plot of KEp1 against Z showing the position of x1.
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where kqs ¼
R 1
0 csf̄xq dx̄ as before, Eq. (13).

H ¼ Z4

y1 0 � � � 0 � � � 0

0 y2 � � � 0 � � � 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 � � � yq¼s � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 � � � 0 � � � yn

2
666666666664

3
777777777775

where yi ¼ 1�
r

ðai tan aiÞ

� 	

and

X ¼

x41 0 � � � 0 � � � 0

0 x42 � � � 0 � � � 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 � � � x4s � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 � � � 0 � � � x4n

2
666666666664

3
777777777775

is a diagonal matrix containing values of the non-dimensional natural frequencies of the structure alone. Now
introducing the matrix B as

B ¼ K�1HK.

Eqs. (18) and (23) can be written in the form

½B�X�v ¼ 0. (25)

Note that the matrix K contains the values of xs from Eqs. (4) and (13). However, it will be assumed that the
influence of small changes of xs (due to the effect of damage to the structure) on the normal eigenfunctions, Eq. (4),
and hence kqs from Eq. (13) are negligible and the same form of the Kmatrix, based upon Eqs. (4) and (13), is used
irrespective of any changes to xs. This assumption will be examined further at a later stage in this paper. Therefore,
the matrix B above is assumed to contain only values of the coupled natural frequencies of the system, Z, and pre-
known dimensional and physical parameters of the beam and fluid cavity. On the other hand, the matrix X
contains only the unknown values of the non-dimensional natural frequencies of the structure in the absence of
fluid interaction, which we aim to determine. Accordingly, Eq. (18) can now be expressed in the following form:

ðb11 � x41Þ b12 � � � b1s � � � b1n

b21 ðb22 � x42Þ � � � b2s � � � b2n

..

. ..
. ..

. ..
. ..

. ..
.

bs1 bs2 � � � ðbss � x4s Þ � � � bsn

..

. ..
. ..

. ..
. ..

. ..
.

bn1 bn2 � � � bns � � � ðbnn � x4nÞ

2
666666666664

3
777777777775

w1
w2

..

.

ws

..

.

wn

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

0

0

..

.

0

..

.

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
. (26)

Now recalling that at coupled natural frequencies which are characterised by significant vibration energy of
the structure around natural frequencies which are close to those of the structure in the absence of fluid
interaction, the vector of mode shape coefficients, w, is shown to be well defined with a single unity at the
structural mode in question and zeros for all other components to within 3 decimal places. Upon that basis,
and from matrix Eq. (26) above:

xs ¼
ffiffiffiffiffiffi
bss

4
p

. (27)
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To test the feasibility and accuracy of the inverse methodology presented above, Eqs. (17)–(19) are
used to compute values of natural frequencies, Z, of a coupled beam/fluid interacting system with
relevant input values of natural frequencies in the absence of fluid interaction, xs, of the cantilever beam
(from Table 1), the standard eigenfunctions relating to the beam in the absence of fluid interaction
and the completely rigidly enclosed fluid cavity, and other pre-known parameters of the fluid cavity contained
in the matrix A. The computed values of Z are then used to generate the respective values of %KEps. For the
modes, which have the largest value of KEps for each value of s, the respective value of Z is then used to
determine the respective B matrix, Eqs. (25) and (26), along with the standard eigenfunctions relating to the
beam in the absence of fluid interaction and the completely rigidly enclosed fluid cavity, and other pre-known
parameters of the fluid cavity as before. Subsequently for the respective value of s, the natural frequency
in the absence of fluid interaction, xs, is then calculated from Eq. (27) and compared to that value used
in Eqs. (17)–(19). Two examples will be considered. The first example will apply the methodology to the case
where the beam is undamaged and therefore the values of xs are those listed in Table 1. The second example
will consider the case where damage to the beam is simulated by assuming that the values of xs are all reduced
by 10%.

3.1. Beam with no defect

The above inverse methodology will first be tested by considering the coupled modes labeled+ in Table 4. In
these cases, it can be seen from Table 4 that these modes represent those in which there is the highest
proportion of structural vibration energy for each of the first 8 normal modes of the structure. Therefore, for
these modes, Table 5 tests the above inverse methodology by computing the first eight natural frequencies of
the beam in the absence of fluid interaction from Eq. (26) and comparing these values to those presented in
Table 1 for the beam having no defects and used in Eqs. (17)–(19) for the purpose of computing the respective
value of Z.

Table 5 demonstrates the accuracy of the above inverse methodology to obtaining the structural natural
frequencies from values of natural frequencies of the coupled system together with pre-determined physical
parameters of the structure and the fluid cavity.

3.2. Beam with defect

This case will test the inverse methodology by considering the case where the beam has some defect(s) such
that the natural frequencies of it in the absence of fluid interaction natural frequencies, xs, are all reduced by
10%. In this case, once again, it will be assumed that such defect(s) do not incur significant change to the
contents of the matrix K of Eq. (24). Therefore, the same form of the eigenfunction, Eq. (4), is used with the
original values of xs to generate the values of kps contained in Eq. (19). However, values of xs reduced by 10%
are used in the section fx4s � Z4½1� ðr=ðaq tan aqÞÞ�g of Eq. (19) and the inverse process described in Section 3.1
Table 5

Comparison between exact values of xs and those values obtained from Eq. (25) when the exact values of coupled natural frequency, Z, are
introduced in Eq. (25)

s KEps Z xs ¼
ffiffiffiffiffiffi
bss

4
p

xs (Table 1)

1 51 1.9652 1.8750 1.8751

2 94.815 4.6945 4.6941 4.6940

3 98.403 7.8489 7.8548 7.8548

4 97.566 10.9581 10.9955 10.9955

5 55.233 14.1298 14.1372 14.1372

6 76.45 17.2751 17.2789 17.2789

7 74.98 20.4135 20.4204 20.4203

8 73.56 23.5546 23.5620 23.5620
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is repeated. In addition, in order to arrange that there will exist strong coupling between the first modes of the
beam and fluid cavity as with the examples so far, for this case the non-dimensionalised depth of the fluid
cavity is, from Eq. (21), l̄c ¼ 25:26. Table 6 lists the results for this test.

From Table 6, it is seen that the method performs extremely well for the case where the beam has defect(s)
giving rise to reductions in natural frequency from the undamaged beam values, and the matrices K and B

described by Eqs. (24) and (25), respectively, are generated using the eigenfunctions of Eq. (4) for the beam in
the undamaged state.
3.3. Sensitivity to errors in values of Z—robustness of the methodology

In practice it is not possible to measure values of natural frequency to exacting values. Therefore the
question arises as to what level of error will result in the values of xs if the error in Z is varied between say
70.5%. Accordingly Table 7 lists the values of xs obtained when Z is varied between 70.5% from the values
listed and used in Table 5. In Table 7, the symbol xs

+ is used to denote the value of xs obtained when Z is
increased by 0.5% and the symbol xs

� to denote the value of xs obtained when Z is reduced by 0.5% from the
value presented in Table 5.

Tables 7 demonstrates the sensitivity of the extracted values of the natural frequencies of the beam in the
absence of fluid interaction to errors in the coupled natural frequencies being used in the construction of the B
matrix described in Eq. (25). Note that, in general, the deviation of the estimated values of xs (from Eq. (27))
from these exact values from Table 1 is for the most part within the same percentage deviation of the values of
coupled natural frequencies used to construct the B matrix, namely, 70.5%. The exception however is for the
cases of the first and fifth natural frequencies of the beam; s equal to 1 and 5. Upon reflection it is noted from
Table 5, that the first and fifth modes of the beam are the ones in strongest interaction with the fluid,
demonstrated by having values of KEps equal to 51% and 55.233%, respectively.
Table 6

Comparison for a beam with defect reducing all natural frequencies by 10%

S KEps Z xs ¼
ffiffiffiffiffiffi
bss

4
p

0.9xs (Table 1)

1 51.03 1.7773 1.6874 1.6876

2 93.796 4.2259 4.2247 4.2247

3 98.367 7.0650 7.0693 7.0693

4 95.545 9.8932 9.8960 9.8960

5 50.08 12.7181 12.7235 12.7236

6 76.498 15.5493 15.5509 15.5509

7 48.427 18.3734 18.3783 18.3783

8 43.960 21.2035 21.2058 21.2056

Table 7

Sensitivity of xs to a 70.5% change in Z

S xs (Table 1) xs
+ xs

�

1 1.8751 1.8951 (1%) 1.8511 (�1.2%)

2 4.6940 4.7057 (0.25%) 4.6685 (�0.5%)

3 7.8548 7.8942 (0.5%) 7.8144 (�0.5%)

4 10.9955 11.0375 (0.4%) 10.9505 (�0.4%)

5 14.1372 14.2553 (0.8%) 14.0637 (�0.5%)

6 17.2789 17.3645 (0.5%) 17.1773 (�0.6%)

7 20.4203 20.5193 (0.5%) 20.3188 (�0.5%)

8 23.5620 23.6617 (0.4%) 23.4413 (�0.5%)

Figures in brackets are the % differences.
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4. Conclusions

A method has been developed from which estimates of natural frequencies of a cantilever beam in the
absence of fluid interaction can be computed from values of natural frequency when the beam is part of a
structural/fluid vibrating interacting system of which details of the fluid sub-system are known. These
estimates extracted were found to be in extremely close agreement with the exact theoretical values and also
found to be stable when the values of the coupled natural frequencies used were in slight error. By being able
to extract these natural frequencies of the structure in the absence of fluid interaction, the practice of VHM
can be used for beam like structures when it is found that the structure is part of a coupled structural/fluid
interacting system whose natural frequencies are removed for those of the beam alone. This is an important
step towards the development of practically applied VHM.
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